
F. no. HQ-13064/l 12024-AtJTIl-l [{Q/C-1 501 4

Unique Identification Authority of India
(Authentication and Verifrcation Division)

3'd floor. LJIDAI Flead Of1rce

Bangla Sahib Road. Gole Market
New Delhi - 110001

Dated tltuty zozs

Circular 9 of 2025
-fo:

All Requesting entities (AUAs, KUAs, Sub-AUAs and Sub-KUAs) and ASAs

Subject: Aadhaar Status Notification Framework l)ocumentation

Refbrence is invited to UIDAI Circular I ol' 2025 dated 1.1.2025 sub.iected

"llxecution of Supplementary Agreement or Agreement to supplen-rent AIJA Agreement

under sub-regulation (3A) of regulation 9 ol' the Aadhaar (Authentication and Off'line

Verifi cation) Regulatio ns, 2027" .

2. For availing the Aadhaar status verification service. requesting entities are directed to

use the UIDAI's provided API fiamework fbr the same. l-echnical specification document lor

Aadhaar status verillcation is attached in Annexure I.

3. This issues with approval of competent authority.

'['el.: 01 1-23478609
lrrnail : dir2.auth-hq(@uidai.net. in

Copy to:

l. All UIDAI Regional Offices

2.'l'echnology Centre, Bangalore

Annexure I

 Unique Identification Authority of India (UIDAI)

Aadhaar Status Notification Framework
Documentation Version 1.0.0
July-2025

Version 1.0.0 Aadhaar Status Notification Framework

Framework Overview

● Title: UIDAI Aadhaar Status Notification Framework

● Description: This API handles the subscription, notification and interrogation

exchange for Aadhaar status.

● Version: 1.0.0

Description

1.1 UIDAI status notification framework is backed by Para 9 (3A) of the Aadhaar

(Authentication and Offline Verification) Regulation, 2021 issued by UIDAI. This framework

enables the requesting entities who desirous of ensuring update of status regarding an

Aadhaar number previously submitted has been subsequently omitted or deactivated or

reactivated, the Authority shall send a subsequent digitally signed appropriate response,

along with related technical details may enter into this supplementary agreement with

UIDAI.

1.2 The framework would be operationalised through the implementation of the

following API interactions between AUA/Sub-AUA and UIDAI.

● Subscription: AUA/Sub-AUA to subscribe to the notification service of UIDAI.

AUA/subAUA will call the UIDAI subscription endpoint to register the schedule to get

the notification. Refer to Section 2.1 for details on the subscription.

● Polling: AUA/subSub-AUA AUA to poll UIDAI and get the list status change

records at the scheduled interval.

● Verification: This API endpoint would be hosted by UIDAI to provide a mechanism

to interrogate the status code and obtain the reason for rejection. Refer to Section

3.1 for details on the interrogation.

1.3 Billing. UIDAI will record the transaction for billing purposes on successful

notification push to AUA/Sub-AUA . Billing would be recorded for every successful push. Cost

of the transaction and invoicing is beyond the scope of the document.

API Overview

2.1 The API requests and responses are structured with three primary components:
● Signature: A cryptographic signature generated using HMAC (Hash-

based Message Authentication Code) to ensure message integrity and

authenticity.

● Header: Contains metadata about the message, including the version of

the protocol, message identifiers, timestamps, action types, and other

key details necessary to process the request and respond accordingly.

● Message: The core content, which includes subscription details.

Version 1.0.0 Aadhaar Status Notification Framework

Subscription API Overview

3.1 Summary: This endpoint subscribes to an AUA or ASA to receive Aadhaar status

notifications. The service will notify the registered endpoint whenever there is a status

change related to Aadhaar.

HTTP Method: POST

{

"signature": "HMAC of the {header}+{message}", "header": {

"ver": "1.0.0",

"msgId": "12345",

"msgTs": "2024-12-29T10:00:00Z", "ac":

"AUA123",

"sa": "SubAUA001",

"action": "subscribe",

"isMessageEncrypted": false, "lk":

"LICENSEKEY123"

},

"msg": {

"notifyEndpoint": "https://example.com/notify", "startDate":

"2024-12-30",

"schedule": "0 0 * * *"

}

}

Parameters:

● signature: Base 64 of HMAC signature of {header}+{message}.

● header: Contains metadata about the request.

○ ver: Version of the API (e.g., "1.0.0").

○ msgId: Unique identifier for the message.

○ msgTs: Timestamp when the message was created.

○ ac: AUA code assigned by UIDAI.

○ sa: Sub-AUA code assigned by UIDAI.

○ action: Action to be taken, set to "subscribe".

○ isMessageEncrypted: Boolean flag for encrypted message.

● msg: Contains the subscription details.

○ notifyEndpoint: The endpoint where notifications will be sent.

○ startDate: The date after which notifications should start.

Version 1.0.0 Aadhaar Status Notification Framework

○ schedule: Cron expression for scheduling the notification.

Header Parameters:

● ● X-Request-ID

○ Type: string
○ Format: uuid (36-byte UUID)
○ Required: Yes
○ Description: A unique identifier for the request. The value must

be a 36-character UUID

● Content-Type: application/json

Responses:

● 200 OK: Request was successfully processed.
● 400 Bad Request: There was an issue with the input (e.g., invalid format,

missing fields).
● 500 Internal Server Error: There was an unexpected issue while processing

the request.

Example Response

{

"signature": "HMAC of the {header}+{message}", "header": {
"ver": "1.0.0",
"msgId": "12345",
"msgTs": "2024-12-29T10:05:00Z", "ac":
"AUA123",
"sa": "SubAUA001",
"action": "subscribe",
"isMessageEncrypted": false

},

"msg": {
"status": "success",
"message": "Subscription successful"

}

}

400 Bad Request

{

"status": "failure", "error": {
"code": "STS-GEN-001",
"message": "Generic error: Invalid input format."

}

Version 1.0.0 Aadhaar Status Notification Framework

}

500 Internal Server Error

{

"status": "failure", "error": {
"code": "STS-GEN-001",
"message": "Generic error occurred while processing the request."

}

}

4.1 Polling API

UIDAI will host an endpoint which will be polled by the AUA/ASAs to fetch status

change notification.

HTTP Method: POST

https://<<IP Address>>/uidstatus/ver/poll

4.1 Request in Encrypted Form

{

"signature": "HMAC of {header}+{message}", "header": {

"ver": "1.0",

"msgId": "string",

"msgTs": "ISO-8601 Timestamp", "lk": "ASA

license key",

"ac": "AUA Code",

"sa": "Sub-AUA Code",

"action": "notify", "isMessageEncrypted":

true | false

},

"msg": {

"txnId": "Unique transaction ID", "header":

{

"alg": "AES-256-GCM",

"enc": "RSA-OAEP",

"requestSessionKey": "...",

"thumbprint": "...",

"iv": "..."

Version 1.0.0 Aadhaar Status Notification Framework

},

"data": "<Base64Url-encoded ciphertext>", "requestHMAC":

"encrypted hash of "msg" block"

}

}

4.2 Preparation of the data field.

{

"ac": "AUA license key", "sa": "Sub-

AUA license key",

"lastPolledDate": "ISO 8601 date"

}

Steps to prepare the cipher data field as follows:-

● ASA/AUA is required to prepare the above JSON object.

● In the next step, the JSON object is required to be marshalled to a byte array.

● Post marshalling to a byte array, the hash of the byte array is to be

calculated. This hash is to be used to populate the value portion of the

requestHMAC key.

● Then the byte array is encrypted using a symmetric key algorithm. The key to
be

generated to be preserved to encrypt in the subsequent stage. AES-256-GCM

algorithm is to be used for symmetric key encryption.

● Encrypted data is encoded as base64 string and used as value for the data

field.

● The symmetric key is encrypted using the public certificate of the UIDAI and

then encoded using Base64 to get the value portion of requestSessionKey.

4.3 Response in Encrypted Form

{

"signature": “HMAC of {header}+{message}”, "header": {

"ver": "1.0",

"msgId": "string",

"msgTs": "ISO-8601 timestamp", "lk": "ASA

license key",

"ac": "AUA Code",

"sa": "Sub-AUA Code",

"action": "notify",

Version 1.0.0 Aadhaar Status Notification Framework

"isMessageEncrypted": false

},

"msg": {

"header": {

"alg": "AES-256-GCM",

"enc": "RSA-OAEP",

"requestSessionKey":

"VGhpcyBpcyBhIHNhbXBsZSBlbmNyeXB0ZWQgc2Vzc2lvbiBrZXk=",

"thumbprint": "abcdef1234567890abcdef1234567890abcdef12", "iv":

"MTIzNDU2Nzg5MGFiY2RlZg==" // base64url-encoded IV

},

"txnId": "Unique transaction ID"

"recordPending": "Total number of records pending for sync up",

"data":

"U2FtcGxlIGVuY3J5cHRlZCBkYXRhIGJsb2Igd2l0aCB1aWQgc3RhdHVzIHJlc3 BvbnNl",

"requestHMAC": "YWFhYmJiY2NjZGRkZWVlZmZmZ2dnZ2dn"

}

}

4.4 Decoding of the data field

[

{

"referenceId": "Unique Reference ID", "uidToken":

"Tokenized UID", "timestamp": "Status change

timestamp", "status": "actv | susp | inactv"

}

]

Steps to decode the data field as follows:-

● The Base64 encoded encrypted symmetric key is decoded into byte array.

● The symmetric key is to be extracted from the value portion of the

requestSessionKey. AUA/ASA to use their private key to decrypt the

Version 1.0.0 Aadhaar Status Notification Framework

session key.

● Decode the data field, which is in base64 string into a byte array.

● The Byte array is decrypted using the AES-256-GCM algorithm and

the symmetric key.

● The hash of the byte array is computed and then compared with the

requestHMAC.

● Decrypted Byte array is then marshalled into a JSON object as

represented above.

4.5 Attribute Definition

The following attributes are used in status notification request - response.

● signature: HMAC signature of {header}+{message}.
● header: Contains metadata about the notification.

○ ver: API version.
○ msgId: Message ID.
○ msgTs: Timestamp when the message was created.
○ ac: AUA code.
○ sa: Sub-AUA code.
○ action: Set to "notify".

○ isMessageEncrypted: Boolean flag indicating whether the message is
encrypted.

● msg: Contains the notification data:
○ txnId: Transaction ID for the notification event.
○ recordPending : Number of records pending for notification.

○ data: List of status change UIDs in tokenized form.

○ requestHMAC : HMAC of the cleartext byte array

○ header:

i. alg: Defines the symmetric encryption algorithm used to encrypt the

message. For example, AES (Advanced Encryption Standard) can be

used in modes such as CBC (Cipher Block Chaining) or GCM

(Galois/Counter Mode). UIDAI at present supports only AES-256-

GCM.

ii. enc: Specifies the asymmetric encryption algorithm used to encrypt

the session key (e.g., RSA). Asymmetric encryption allows the session

key to be securely shared between the sender and the receiver.

UIDAI at present supports only RSA-OAEP.

iii. requestSessionKey: The actual session key used to encrypt the

message. The session key is encrypted with an asymmetric encryption

algorithm (like RSA) and then Base64Url-encoded to ensure it's safely

transmitted.

iv. thumbprint: The thumbprint of the public key that was used to

Version 1.0.0 Aadhaar Status Notification Framework

encrypt the session key. This thumbprint ensures that the correct

public key is being used and allows the recipient to verify the key

used for encryption.

v. iv: The Initialization Vector used in encryption. The IV ensures that

even if the same plaintext is encrypted multiple times, it will produce

different ciphertexts each time. The IV is typically a random bit string

used in modes like AES-CBC.

5.1 UID Status Verification API

The UID Status Verification API allows Authentication User Agencies (AUAs) and Sub-AUAs

(Sub-Authentication User Agencies) to check the status of a UID (Unique Identification

Number) or a list of UIDs after receiving status modification intimations from UIDAI. This API

is designed to facilitate secure, real-time access to the status of UIDs to ensure accurate and

up-to-date identity information for services requiring Aadhaar-based authentication.

The API request and response are structured with three primary components:

● Signature: A cryptographic signature generated using HMAC (Hash-

based Message Authentication Code) to ensure message integrity and

authenticity.

● Header: Contains metadata about the message, including the version of

the protocol, message identifiers, timestamps, action types, and other

key details necessary to process the request and respond accordingly.

● Message: The core content, which includes encrypted data, encryption

details (such as algorithm and keys), and a session key to securely

communicate the UID status check.

This specification outlines the message format, the cryptographic methods used, and the

endpoint details, ensuring secure, efficient, and standard-compliant communication

between parties using the UID Status Verification API. The API supports both

encrypted and non-encrypted message exchanges, with the flexibility to accommodate

varying use cases for UID status verification.

5.1.1 Sample Request

{

"signature": "HMAC of the {header}+{message}", "header": {

Version 1.0.0 Aadhaar Status Notification Framework

"ver": "1.0.0",

"msgId": "12345",

"msgTs": "2024-12-29T10:00:00Z",

"action": "search",

"tid": "registered",

"ac": "AUA123",

"sa": "SubAUA001", "lk":

"LICENSEKEY123",

"totalCount": 100,

"isMsgEncrypted": false

},

"msg": {

"header": {

"alg": "AES-256-GCM",

"enc": "RSA-OAEP",

"requestSessionKey": "encrypted_session_key",

"thumbprint": "thumbprint_string",

"iv": "initialization_vector"

},

"data": "Base64Url-encoded encrypted payload",

"requestHMAC": "HMAC of the encrypted message"

}

}

Data Block before encryption:

[

{

"type": "uid",

"uidToken": "123456789012"

},

{

"type": "uid",

"uidToken": "987654321098"

},

{

"type": "token", "uidToken":

"abcdef123456"

Version 1.0.0 Aadhaar Status Notification Framework

}

]

5.1.2 Sample Response

{

"signature": "HMAC of the {header}+{message}", "header": {

"version": "1.0.0",

"msgId": "12345",

"msgTs": "2024-12-29T10:05:00Z",

"action": "search",

"ac": "AUA123",

"sa": "SubAUA001",

"totalCount": 100,

"isMsgEncrypted": false

},

"msg": {

"header": {

"alg": "AES with GCM",

"enc": "RSA",

"requestSessionKey": "encrypted_session_key",

"thumbprint": "thumbprint_string",

"iv": "initialization_vector"

},

"data": "Base64Url-encoded encrypted payload",

"requestHMAC": "HMAC of the encrypted response"

}

}

Data Block post decryption

[

{

"uidToken": "abcdef123456",

"uidStatus": "ACTIVE",

"errorCode": "0", "errorMsg":

"No error"

},

Version 1.0.0 Aadhaar Status Notification Framework

{

"uidToken": "987654abcdef123456321098", "uidStatus":

"INACTIVE",

"errorCode": "0",

"errorMsg": "No error"

},

{

"token": "abcdef123456656",

"uidStatus": "",

"errorCode": "STV-VER-001",

"errorMsg": "UID status processing failed"

}

]

5.2 Attribute Definition

The following attributes are defined within the UID Status Verification API for both the

request and response. These attributes describe the structure and purpose of each part of

the message for clarity and standardization.

● signature: HMAC signature of {header}+{message}.
● header: Contains metadata about the notification.

○ version: The version of the messaging protocol being used (e.g., "0.1.0").

○ msgId: A unique identifier for the message, used for tracking and correlation.

○ msgTs: Timestamp when the message was created, represented in ISO

8601 format.

○ action: The action to be performed (e.g., "search" for UID status check).

○ ac: Unique code identifying the AUA (Authentication User Agency).

○ sa: Code identifying the Sub-AUA (if applicable).

○ lk: The license key for the AUA or Sub-AUA.

○ totalCount: Number of records in the batch being processed.

○ isMsgEncrypted: Boolean flag indicating whether the message body is
encrypted.

● msg:
● header: Metadata for the encrypted message, including encryption settings

and keys.

○ alg: The encryption algorithm used (e.g., "AES with GCM").

○ enc: Encryption method or mode used.

○ requestSessionKey: The session key used for the encryption.

○ thumbprint: A fingerprint of the public key used for encryption.

Version 1.0.0 Aadhaar Status Notification Framework

○ iv: The initialization vector for the encryption.

● data: The encrypted and base64-encoded payload containing the UID

status check request.

○ uidToken: The UID token whose status is being returned

(e.g., "123456789012" or a token value).

○ uidStatus: The current status of the UID (e.g., "ACTIVE",

"INACTIVE", etc.).

○ errorFlag: An optional flag indicating if there was an error in

processing the UID status. This could be used to return error

details.

● requestHMAC: The HMAC used to validate the integrity of the request
message.

6. Analytics Events

On successful notification of status change information to the AUA, an event would be

generated, which will serve dual purpose i.e. invoicing with AUA/subAUA and business

monitoring of the process. Event would comprise of following attributes:

● Event Metadata

○ _eventId : UUID value to uniquely identify the event

○ _eventType : “AADHAAR_STATUS_NOFICATION_PUSH”

○ _eventTimestamp: Event Timestamp in ISO Format

○ _version : Version of the Event Structure

● Payload

○ requestId : x-request-id of the transaction

○ msgId: message ID of the UIDAI Event

○ msgTs : Timestamp

○ refId : ReferenceId of ANH

○ ac : AUA Code

○ sa : subAUA Code

○ responseStatus : Response Status from AUA/subAUA

	Framework Overview
	Description
	API Overview
	Subscription API Overview
	HTTP Method: POST
	Parameters:
	● ● X-Request-ID
	Example Response
	400 Bad Request
	500 Internal Server Error
	4.1 Polling API
	HTTP Method: POST (1)
	4.1 Request in Encrypted Form
	4.2 Preparation of the data field.
	4.3 Response in Encrypted Form
	4.4 Decoding of the data field
	4.5 Attribute Definition
	5.1 UID Status Verification API
	5.1.1 Sample Request
	Data Block before encryption:
	5.1.2 Sample Response
	Data Block post decryption
	5.2 Attribute Definition
	6. Analytics Events

